Exam. Code : 103203 Subject Code : 1128

B.A./B.Sc. $3^{\text {rd }}$ Semester
 QUANTITATIVE TECHNIQUES-III

Time Allowed-3 Hours]
[Maximum Marks-100
Note :- Use of simple (Non-scientific) calculators is allowed.
Note :- (1) The first question consists which of 10 short answer type parts is compulsory. Attempt ALL parts of this question with answer to each part in upto 5 lines. Each part carries 2 marks.
(2) The candidates will attempt ONE out of TWO questions from each of the FOUR units (of $\mathbf{2 0}$ marks each).

1. (a) Explain the condition of maxima/minima for $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
(b) Differentiate w.r.t. $\mathrm{x}: \mathrm{y}=\mathrm{a}^{\mathrm{x}}+\mathrm{x}^{\mathrm{a}}+\mathrm{x}^{\mathrm{x}}$.
(c) Evaluate $\int \frac{1}{x^{5}} d x$.
(d) Write down the formula for getting integration by parts of $\int u v d x$, where u and v are two functions of x.
(e) Conceptual meaning of producer's surplus.
(f) If $\mathrm{A}=\left(\begin{array}{cc}1 & -2 \\ -3 & 4\end{array}\right)$, then show that

$$
(\operatorname{Adj} . \mathrm{A}) \mathrm{A}=\mathrm{A}(\mathrm{Adj} . \mathrm{A}) .
$$

(g) Give some applications of matrix algebra in Economics.
(h) If $\mathrm{A}=\left(\begin{array}{ll}5 & 3 \\ 4 & 6\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}7 & 4 \\ 4 & -6\end{array}\right)$, examine if

$$
\mathrm{AB}=\mathrm{BA} .
$$

(i) General formulation of an LPP model.
(j) Assumptions of input-output analysis. $10 \times 2=20$

UNIT-I

2. (a) If $x^{y}=y^{x}$, then show that $\frac{d y}{d x}=\frac{x y \log y-y^{2}}{x y \log x-x^{2}}$.
(b) Find the total differential of the function

$$
u=\left(x^{2}+y^{2}\right)\left(2 x^{2}-y\right) .
$$

3. (a) Find the extreme values of the function

$$
u=x^{3}+y^{3}-3 x-27 y+24
$$

(b) If $u=x^{3}+y^{3}+z^{3}-3 x y z$, then show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=3 u
$$

130(2116)/RRA-8179

UNIT-II

4. (a) Evaluate $\int \frac{4 x+5}{2 x^{2}+5 x+3} d x$.
(b) Find the value of $\int\left(x^{2}-a^{2}\right) d x$.
5. The demand function for a commodity is : $\mathrm{P}=30-2 \mathrm{Q}$. And, the supply function is : $P=3 Q$. Find consumer's surplus and producer's surplus at the equilibrium price.

UNIT-III

6. (a) Find inverse of the matrix $A=\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 2 & 1 \\ 3 & 2 & 2\end{array}\right]$.
(b) If $A=\left(\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right)$, then find k, such that

$$
\mathrm{A}^{2}-\mathrm{kA}+21=\underline{0} .
$$

7. Write a brief note on the method of solving a system of simultaneous equations by Cramer's rule. Apply the rule for solving the following system of such equations :

$$
3 x+2 y-z=4,-x+y=1 \text { and } x+y+z=6
$$

UNIT-IV

8. (a) What is meant by the problem of degeneracy? Write a brief note.
(b) Minimise by graphical method:

$$
\begin{gathered}
600 \mathrm{X}_{1}+400 \mathrm{X}_{2} \text {, subject to } \\
300 \mathrm{X}_{1}+100 \mathrm{X}_{2} \geq 2400 \\
100 \mathrm{X}_{1}+100 \mathrm{X}_{2} \geq 1600 \\
200 \mathrm{X}_{1}+600 \mathrm{X}_{2} \geq 4800 \\
\mathrm{X}_{1}, X_{2} \geq 0
\end{gathered}
$$

9. The input-output coefficient matrix A and the final demand vector D for an economy with three sectors are given below :

$$
\mathrm{A}=\left(\begin{array}{lll}
0.3 & 0.4 & 0.2 \\
0.2 & 0.0 & 0.5 \\
0.1 & 0.3 & 0.1
\end{array}\right) ; \mathrm{D}=\left(\begin{array}{c}
100 \\
40 \\
50
\end{array}\right)
$$

Work out the output level of the three factors.

